Study on multi-center fuzzy C-means algorithm based on transitive closure and spectral clustering

نویسندگان

  • Shan Zeng
  • Xiaojun Tong
  • Nong Sang
چکیده

Fuzzy C-means (FCM) clustering has been widely used successfully in many real-world applications. However, the FCM algorithm is sensitive to the initial prototypes, and it cannot handle non-traditional curved clusters. In this paper, a multi-center fuzzy C-means algorithm based on transitive closure and spectral clustering (MFCM-TCSC) is provided. In this algorithm, the initial guesses of the locations of the cluster centers or the membership values are not necessary. Multi-centers are adopted to represent the non-spherical shape of clusters. Thus, the clustering algorithm with multi-center clusters can handle nontraditional curved clusters. The novel algorithm contains three phases. First, the dataset is partitioned ulti-center attice similarity pectral clustering into some subclusters by FCM algorithm with multi-centers. Then, the subclusters are merged by spectral clustering. Finally, based on these two clustering results, the final results are obtained. When merging subclusters, we adopt the lattice similarity method as the distance between two subclusters, which has explicit form when we use the fuzzy membership values of subclusters as the features. Experimental results on two artificial datasets, UCI dataset and real image segmentation show that the proposed method outperforms traditional FCM algorithm and spectral clustering obviously in efficiency and robustness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using fuzzy c-means clustering algorithm for common lecturer timetabling among departments

University course timetabling problem is one of the hard problems and it must be done for each term frequently which is an exhausting and time consuming task. The main technique in the presented approach is focused on developing and making the process of timetabling common lecturers among different departments of a university scalable. The aim of this paper is to improve the satisfaction of com...

متن کامل

An overview and new methods in fuzzy clustering

Principal methods in nonhierarchical and hierarchical fuzzy clustering are overviewed. In particular, the method of fuzzy c-means is focused upon and recent algorithms in fuzzy c-means are described. It is shown that the concept of regularization plays an important role in the fuzzy c-means. Classification functions induced from fuzzy clustering are discussed and variations of the standard fuzz...

متن کامل

Clustering Methods Based on Weighted Quasi-Arithmetic Means of T-Transitive Fuzzy Relations

In this paper we propose clustering methods based on weighted quasiarithmetic means of T -transitive fuzzy relations. We first generate a T -transitive closure R from a proximity relation R based on a max-T composition and produce a T -transitive lower approximation or opening RT from the proximity relation R through the residuation operator. We then aggregate a new T -indistinguishability fuzz...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

Bilateral Weighted Fuzzy C-Means Clustering

Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014